8 Explainable AI Frameworks
Explainable AI te ayuda a comprender los resultados que genera el modelo de aprendizaje automático predictivo para las tareas de clasificación y regresión definiendo cómo cada atributo de una fila de datos contribuyó al resultado previsto. A menudo, esta información se conoce como atribución de atributos.
Entre los frameworks mencionados se destacan:
What-if Tool: TensorFlow team announced the What-If Tool, an interactive visual interface designed to help visualize datasets and better understand the output of TensorFlow models.
LIME: Local Interpretable Model-Agnostic Explanations LIME is an actual method developed by researchers at the University Of Washington to gain greater transparency on what’s happening inside an algorithm.
DeepLIFT: DeepLIFT is a method that compares the activation of each neuron to its ‘reference activation’ and assigns contribution scores according to the difference.
AIX360: The AI Explainability 360 toolkit is an open-source library developed by IBM in support of interpretability and explainability of datasets and machine learning models.
Activation Atlases: Google in collaboration with OpenAI, came up with Activation Atlases, which was a novel technique aimed at visualising how neural networks interact with each other and how they mature with information along with the depth of layers.
No hay comentarios:
Publicar un comentario